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A set of equations is derived for converting acoustic measurements taken in a free-jet #ight
simulation facility, such as the U.K. Noise Test Facility at Pyestock or the French
CEPRA-19 wind tunnel at Saclay, to equivalent far"eld #ight conditions. The equations are
based on the high-frequency geometrical acoustics approximation, whose application in the
present context was justi"ed in early studies by Morfey and Tester in 1977 and by Amiet in
1978. However, the present work di!ers by allowing the source to be positioned o! the jet
centreline, anywhere within the #ight stream. The #ight stream jet is modelled as an
axisymmetric parallel shear #ow, with a shear layer thickness which is small compared with
the jet diameter. The model also permits the microphone to be located anywhere outside the
#ow, arbitrarily close to the open jet. The consequences of o!-axis source location are
illustrated by numerical calculations.
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1. INTRODUCTION

1.1. BACKGROUND

At the design stage of any new civil aircraft it is important to predict the noise it will
produce, particularly at takeo! and landing. A complicating factor is the re#ection or
scattering of exhaust noise from the airframe structure. These so-called installation e+ects
are currently not well understood, so their presence introduces some uncertainty into
#yover noise predictions. Moreover, they often increase the noise levels on the ground.
Speci"cally, the static-to-#ight noise reductions predicted from #ight simulation tests on an
isolated exhaust system are not realized on the installed engine.

There is a serious di$culty in isolating installation e!ects from full-scale tests alone. The
reason is that noise measurements at full scale are normally limited to two conditions: static,
with a bare engine on a test stand, and in -ight, with a fully installed engine in an aircraft. In
this situation it is impossible to decide how much of the di!erence in noise is due to #ight
e!ects, and how much to installation e!ects.

However by testing at model scale, in a #ight simulation facility such as that at DERA
(Pyestock, U.K.) or the CEPRA-19 wind tunnel (Saclay, France), a four-way comparison of
static and in-#ight noise from uninstalled and installed exhaust systems becomes feasible.
The open-jet type of facility, in which measurements are taken outside the #ight simulation
stream, requires that the data be adjusted for amplitude, frequency and angle of observation
sAn abbreviated version of this paper was presented by the second author at the "rst CEAS-ASC Workshop on
Wind Tunnel Testing in Aeroacoustics (DNW, Noordostpolder, The Netherlands, 5}6 November 1997).
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in order to obtain sound pressure levels that are equivalent to #yover measurements made
near the ground in the far "eld. In what follows, we refer to these data adjustments as
&&shear-layer corrections''. Their calculation for o!-axis sources is the subject of the present paper.

1.2. CALCULATION OF SHEAR-LAYER CORRECTIONS VIA GEOMETRICAL ACOUSTICS

A comparison is presented in reference [1] between the standard geometrical acoustics
(GA) shear layer correction procedure and a wave-theory numerical calculation for on-axis
sources in a round jet, using realistic ratios of shear-layer thickness (d) to acoustic
wavelength (j

!#
); it shows agreement within typically 0)3 dB between the two transmitted

pressure levels, even for single-frequency sources. Similar conclusions are reached in
reference [2], using a two-dimensional geometry for the comparisons. For "nite-bandwidth
data (e.g., 1/3-octave) the agreement will be closer still.

Since the GA approximation provides closed-form analytical results for an axisymmetric
plug #ow, it has been adopted for the present study. An alternative to the analytical
approach developed below would be to use the equations developed in references [3, 4] for
numerical solution of the ray equations in a mean #ow "eld, and to evaluate each speci"c
#ow and source geometry as required, using a suitable code. The numerical approach o!ers
#exibility in the choice of #ow "elds, with e$cient methods developed for either axially
invariant parallel shear #ow [3] or arbitrary three-dimensional #ow [4]. The present
explicit analytical result is complementary to these, in that general trends are easily detected
and quanti"ed, albeit for an axisymmetric plug #ow model only.

Finally, it is interesting to note that as part of his wide-ranging contribution to GA
calculation methods in mean #ow, Candel [4] presented a number of predictions based on
ray theory for sources in a jet #ow, located both on and o! the axis, and his numerical
results illustrate several of the features discussed in section 4 of the present paper.

1.3. OFF-AXIS SOURCES: OUTLINE OF THE INVESTIGATION

The GA shear layer corrections developed in references [1, 2] are restricted to sources on
the axis of the open jet. When an installed-engine model is placed in the jet, however, the
sound from an engine exhaust placed on the centreline may be scattered by surfaces
relatively far from the jet axis. The question then arises of whether signi"cantly di!erent
shear layer corrections are needed for such o!-axis sources.

To explore this question, the standard GA correction algorithm for on-axis sources and
cylindrical shear layers [1] has been extended so that sources can be placed at arbitrary
radial and azimuthal positions within the #ight stream jet; the azimuthal reference here is
provided by the external microphone location. Section 2 sets out the theoretical basis of the
ray calculation, and in section 3 a generalized correction procedure is developed for o!-axis
sources radiating through the shear layer.

Obtaining an explicit analytical result for the shear-layer correction factor requires
a careful discussion of the ray-tube geometry, as presented in Appendix A. Note that in all
cases, the general result contained in equation (33) of section 3.2 remains valid. It relates the
power spectrum of the pressure measured in the facility to the desired far-"eld measurement
in #ight. The algebraic complication that arises in Appendix A is due entirely to the dA

n
/dX

1
term in equation (33), which is a measure of the ray-tube area outside the #ight stream.

In section 4, the shear layer amplitude correction factor is evaluated numerically in the far
"eld (r

m
/aPR), for a range of source positions across the #ight stream jet and for a realistic
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range of #ight Mach numbers and emission angles. The key results for this purpose are
contained in equations (33) and (A44). Con"rmation of the analytical ray-tube area result is
provided by examining three special cases in Appendices B, C, and D:

f Measurement microphone in the geometric far "eld: (r
m
/aPR).

f Measurement microphone immediately outside the jet: (r
m
/a"1).

f Source on the jet centreline: (r
s
/aP0).

Here r
m

is the measurement radius (distance of the microphone from the jet axis), r
s
is the

source radius, and a is the radius of the jet (for a complete list of symbols, see Appendix E).

2. THEORETICAL ANALYSIS OF REFRACTION CORRECTIONS

The analysis is based on an idealized model of the #ow "eld, in which the #ow is parallel
and axisymmetric and the jet shear layer remains thin compared with the nozzle diameter.
Use of GA means the shear layer correction is source-independent. The following
nomenclature is used throughout.

Region 1"#ight simulation jet; modelled as a top-hat pro"le, velocity ;"const.
Region 0"exterior region, #uid at rest.
The x-axis points downstream, and cylindrical co-ordinates (r, /, x) are used; the model
#ow "eld does not vary with x. Figure 1 shows the ray geometry, for a typical ray leaving the
source at A and crossing the jet shear layer at B.

2.1. DOPPLER RELATION

For a given axial wavenumber k
x
, frequencies u

0
relative to the outer #uid (at rest in the

laboratory reference frame) and u
1

relative to the #ight simulation #ow "eld (i.e., moving at
velocity ; ) are related by

u
0
"u

1
#k

x
;. (1)

We introduce the polar angles (h
1
, h

0
) de"ned by

cos h
1
"k

x
c
1
/u

1
"k

x
/k

1
(inside the #ow),

cos h
0
"k

x
c
0
/u

0
"k

x
/k

0
(outer region): (2)

they represent the angles made by the wavenormal with the jet axis, inside and outside the
jet. Substituting u

1
"k

x
c
1
/cos h

1
and u

0
"k

x
c
0
/cos h

0
into equation (1) gives

c
0
/cos h

0
"c

1
/cos h

1
#;,

i.e.,

cos h
0
"(c

0
/c

1
)D

1
cos h

1
. (3)
Figure 1. Ray geometry. (a) Side view. (b) View along the x-axis.
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Equation (3) relates the wavenormal angles inside and outside the #ow. The Doppler factor
D

1
, de"ned below, is the ratio of the frequency heard by an observer moving with the #ow

inside the jet and the frequency in a "xed frame. These two frequencies are related by

u
1
/u

0
"D

1
"(1!;/c

0
cos h

0
)"(1#;/c

1
cos h

1
)~1. (4)

2.2. TRANSVERSE WAVENUMBERS AND REFRACTION

In the plane normal to the x-axis, the wavenumbers in regions (1, 0) are denoted by K
1
,

K
0
. They are related to k

x
by

K2
1
#k2

x
"(u

1
/c

1
)2, K2

0
#k2

x
"(u

0
/c

0
)2. (5)

Note that the same axial wavenumber k
x

applies inside and outside the jet. The (K
1
, K

0
)

relations above can be rewritten in terms of h
0

or h
1
, rather than k

x
, by using equations (2)

and (4): thus

(K
1
c
0
/u

0
)2"(c

0
/c

1
)2 D2

1
!cos2 h

0
, (K

1
c
1
/u

1
)2"sin2 h

1
, (6)

(K
0
c
0
/u

0
)2"sin2 h

0
, (K

0
c
1
/u

1
)2"(c

1
/c

0
)2 D~2

1
!cos2 h

1
. (7)

In the transverse plane, the ray emerging at B from the jet has angles of incidence and
transmission (a

1
, a

0
), respectively, de"ned relative to the local normal at the interface

between regions 1 and 0 (see Figure 2).
Conservation of the transverse wavenumber parallel to the interface gives

K
1
sin a

1
"K

0
sin a

0
(8)

which is a form of Snell's law. Note that the ray and wavenormal directions projected onto
the transverse plane are the same, since the #ow is assumed to be axial.

Combining equations (6)}(8), and writing (c
0
/c

1
) D

1
as E, gives

A
sin a

0
sin a

1
B
2
"A

K
1

K
0
B
2
"

sin2 h
1

(E~2!cos2 h
1
)
"

(E2!cos2 h
0
)

sin2 h
0

. (9)

Equation (9) allows rays to be traced in the transverse plane from a source at A, via the
shear layer at B, to points in the exterior "eld.
Figure 2. Refraction in transverse plane.
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2.3. RAY TRACING

A ray starts from the source at A, at (r
s
, 0, 0) in cylindrical co-ordinates (r, /, x),

and crosses the jet shear layer at B. The aim is to "nd the co-ordinates of B, and
the trajectory of the emerging ray, in terms of the ray launch angle j in the transverse plane
(see Figure 3).

2.3.1. Azimuthal location of ray crossing

In cylindrical co-ordinates, Figure 3 locates the crossing point B at

r
B
"a ("jet radius), /

B
"j!a

1
. (10, 11)

The angle of incidence a
1

is related to j by

r
s
/sin a

1
"a/sin j ,

i.e.,

sin a
1
"(r

s
/a) sin j. (12)

From equations (11) and (12),

/
B
"j!sin~1 ((r

s
/a) sin j). (13)

2.3.2. Axial and transverse ray velocity components

To "nd x
B
one needs to consider the ray velocity vector v in the jet. Its axial component is

v
x
"c

1
n
1x
#;, (14)

where n
1

is the unit wavenormal vector in the #ow. In terms of k
x
,

n
1x
"k

x
/k

1
"k

x
c
1
/u

1
"cos h

0
/E"cos h

1
, (15)

where E"k
1
/k

0
"(c

0
/c

1
)D

1
was "rst introduced in equation (9).
Figure 3. Source emission angle j and ray refraction in the transverse plane. Transverse distance AB"d
1
.
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The component of v in the transverse plane has magnitude

v
t
"c

1
n
1t

, (16)

where n
1t

is the magnitude of the component of n
1
in the transverse direction. It is related to

n
1x

and the wavenormal angles by

n
1t
"J1!n2

1x
"J1!(cos h

0
/E)2"sin h

1
. (17)

2.3.3. Axial distance travelled by ray in jet -ow

The ratio of v
x

to v
t
gives the ratio of distances travelled by the ray, in a given time,

parallel and perpendicular to the x-axis. Thus if d
1

is the transverse distance between A and
B (Figure 3), given by

d
1
"a sin/

B
/sin j , (18)

it follows that

x
B
/d

1
"v

x
/v

t
"(c

1
n
1x
#;)/c

1
n
1t

(19)

from equations (14) and (16) above. This expression can be rewritten, using equations (15)
and (17), in the alternative forms

x
B

d
1

"A
cos h

0
E

#

;

c
1
BNS1!A

cos h
0

E B
2
"

(cos h
1
#;/c

1
)

sin h
1

. (20)

2.3.4. Summary of ray-crossing location results

The cylindrical co-ordinates of the point B where the emerging ray crosses the shear layer,
i.e. (x

B
, /

B
, a), are now de"ned. Choose as independent variables the source radius r

s
; the ray

launch angle, j, in the transverse plane; and the wavenormal angle in the #ow, h
1
, measured

from the jet axis. Then

f x
B

is given by equation (18) and (20) above, and
f /

B
is given by equation (13) above.

2.4. RAY GEOMETRY IN OUTER REGION

The emerging ray outside the jet #ow has a unit wavenormal vector n
0
. The direction of

n
0

can be speci"ed in terms of azimuthal and polar angles, (/
0
, h

0
), as in Figures 3 and 4.

The polar angle h
0
has already been introduced in equation (2), and /

0
is the ray orientation

in the transverse plane; it corresponds to the azimuthal co-ordinate of a far"eld point on the
ray. Thus,

/
0
"j!a

1
#a

0
(see Figure 3)

"j!sin~1 A
r
s
a

sin jB#sin~1 A
K

1
K

0

r
s
a

sin jB (21)



Figure 4. (a) Ray tube geometry between source and far "eld point. (b) Enlargement of ray tube intersection with
the cylindrical surface r"r

m
, in the far "eld (r

m
Aa).
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from equations (8), (12) and (13). The polar angle h
0

is given by

cos h
0
"E cos h

1
(E"c

0
D

1
/c

1
). (22)

2.4.1. Ray-tube solid angles

In order to apply an energy conservation argument to relate the mean-square pressures in
regions (0) and (1), we shall need to calculate the ratio dA

n
/dX

1
. Here dA

n
is the ray-tube

cross-sectional area in region (0) outside the jet (see Figure 4), which in the far "eld is simply
related to the ray-tube solid angle dX

0
by

dX
0
+

dA
m
sin3 h

0
r2
m

"

dA
n
sin2 h

0
r2
m

(r
m
/aPR). (23)

The solid angle dX
1

is de"ned by the corresponding n
1

directions inside the jet #ow. Note
that dX

1
is not the ray-tube solid angle inside the jet #ow, but the wavenormal solid angle.

Thus

dX
1
"Ddjd(cos h

1
) D . (24)

3. FACILITY DATA CORRECTION: SUMMARY OF OBJECTIVES

Figure 5 shows the comparison between the ray path ABM in the #ight simulation
facility and the corresponding ray path ABN in the true #ight situation, with the frame of
reference in both cases chosen to make the source stationary. The autospectral densities of
the acoustic pressure at M in the #ight-simulation facility (outside the jet but not necessarily
in the geometric far "eld), and at N in the #ight situation (with the microphone in the far
"eld), are respectively P

m
(u) and P

=
(u). Both are measured in the aircraft reference frame
Figure 5. Flight simulation versus the true #ight situation: comparison of ray paths.



Figure 6. De"nition of intensity component normal to wavefront.
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(previously distinguished by subscript 0); the 0 subscript on u is dropped here for
convenience.
&&Corresponding ray paths'' means that the wavenormal n

1
inside the #ow is the same in

both cases (1) and (2). Given this correspondence, the ratio P
m
(u)/P

=
(u) can be predicted

within the limitations of geometrical acoustics, without the need for source information. It
then follows that measured P

m
(u) values can be processed to yield P

=
(u). We note the

following practical points:

f Data are assumed to be collected at discrete positions outside the open jet. Typical
values of r

m
/a in current facilities range from 10 to 40.

f The objective is to convert P
m
(u) measurements into R2

r
P
=

(u) values, for selected
emission angles (j, h

1
) within the #ow. Symbol R

r
denotes the distance travelled by an

acoustic wavefront relative to the #uid, as indicated in Figure 6.
f This will involve interpolating between measurement points to get the desired (j, h

1
)

combination, and then applying correction factors to the interpolated measured P
m
(u)

values.

3.1. RELATION BETWEEN MEASUREMENT POSITION AND SOURCE EMISSION ANGLES

The same cylindrical co-ordinates are used to locate M as were used for A and B (Figures
1}3). Thus the (r, /, x) co-ordinates for these points are

(source point A) r
s
, 0, 0,

(shear layer B) a, j!a
1
, x

B
[equations (20), (18) give x

B
],

(microphone M) r
m
, /

m
, x

m
.

The aim is to relate (/
m
, x

m
) to (j, h

1
), for given values of r

m
, r

s
, and a.

3.1.1. Azimuthal measurement position

From Figure 7,

/
m
"(j!a

1
)#(a

0
!d), (25)



Figure 7. Geometry for calculation of measurement azimuth angle. Transverse distance BM"d
0
.
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where

a/sin d"r
m
/sin a

0
. (26)

It follows that

/
m
"j!a

1
#a

0
!sin~1 ((a/r

m
) sin a

0
). (27)

Note that a
1
is related to j by equation (12), and a

0
to a

1
by equation (9). Therefore /

m
(j, h

1
)

can be calculated, for any given values of r
s
/a and r

m
/a, using equations (9), (12), and (27).

3.1.2. Axial measurement position

The axial displacement (x
m
!x

B
) follows from a calculation similar to that used earlier to

"nd x
B
(see sections 2.3.2 and 2.3.3); but since this segment of the ray path lies outside the jet,

there is no complication arising from #ow convection. Thus

(x
m
!x

B
)

d
0

"

n
0x

n
0t

"

cos h
0

sin h
0

"

E cos h
1

J1!E2 cos2 h
1

. (28)

The distance d
0

is the projection of BM on the transverse plane (see Figure 7); using
equations (25)}(27) gives

d
0
"r

m

sin (a
0
!d)

sin a
0

"r
m

1

sin a
0

sin Ga0!sin~1
a

r
m

sin a
0H . (29)

As was noted in the previous section, a
0

can be found from (j, h
1
) using equations (9) and

(12). Given a
0
, (x

m
!x

B
)/a can be calculated from equations (28) and (29), as a function of

(j, h
1
) and the parameters (r

s
/a, r

m
/a).

3.2. AMPLITUDE CORRECTION

The analysis of section 3.1 allows the ray position (/
m
, x

m
) to be identi"ed, on the

near-"eld cylindrical surface r"r
m
, for any combination of source emission angles (j, h

1
) in
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the jet #ow. The next step is to convert the measured P
m
(u) value to an equivalent R2

r
P
=

(u)
value in the true #ight situation.

The approach adopted is that used in reference [1]. Based on the GA approximation, the
acoustic energy #ow along a ray tube*such as that in Figure 4*is conserved. If d=

1
(u)

denotes the power travelling along section AB of the ray tube, per unit angular frequency in
a reference frame attached to the facility (or aircraft), and d=

0
(u) is the power in the same

ray tube after it emerges from the jet, then energy conservation means that

d=
1
(u)"d=

0
(u). (30)

(a) Outside the #ow, d=
0
(u) is related to the measured power spectrum of acoustic

pressure P
m
(u) as follows:

d=
0
(u)"dA

n
/o

0
c
0

P
m
(u). (31)

Here dA
n
is the ray-tube cross-sectional area (measured normal to the ray direction), at the

measurement location M outside the jet (see Figures 5 and 7). It is not the same as dA
m

(measured on the cylindrical surface r"r
m
; see Figure 4).

(b) Inside the #ow, d=
1
(u) is related to the far"eld quantity R2

r=
P
=

(u) that would ideally
be measured in the true #ight situation. The relationship is

d=
1
(u)"

dX
1

o
1
c
1
D2

1

R2
r=

P
=

(u) (32)

and follows from equation (15) of reference [1].
Equating expressions (31) and (32) gives

R2
r=

P
=

(u)"
o
1
c
1
D2

1
o
0
c
0

dA
n

dX
1

P
m
(u). (33)

This is a key result, as it provides a conversion from the near "eld measurement P
m
(u) made

in the facility outside the shear layer, to the desired far"eld measurement that would be
made in the true #ight situation without the shear layer. The frame of reference in both cases
is attached to the source (aircraft).

3.2.1. Calculation of dA
n
/dX

1
factor

The solid angle dX
1

is related to the incremental source emission angles, dj and dh
1
, by

equation (24). However, the cross-sectional area dA
n

of the emerging ray tube in the
geometric near "eld is a complicated function of several variables:

dA
n
"a2 dj dh

1
f (j, h

1
, ;

1
/c

1
, c

0
/c

1
, r

s
/a, r

m
/a). (34)

There are two special cases where dA
n
/dX

1
is relatively straightforward to calculate, and

which can be used to test the general analysis of Appendix A: they are (1) measurement
position immediately outside the shear layer, i.e., at point B in Figures 1}6; and (2) source
position on the jet centreline.

The exact calculations for these two cases are presented in Appendices B and C.
Meanwhile in section 3.2.2 below an approximation is presented which is asymptotically
valid in the far"eld, and which is relatively simple to derive; the general exact result, which
can be obtained analytically but is considerably more complicated, is developed in
Appendix A.
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3.2.2. Approximation to dA
n
/dX

1
factor

For distances r
m

from the jet axis which are not too small (say r
m
/a'10), it may be

su$ciently accurate to estimate dA
n
from the far"eld expression

dA
n
+R2

r0
dX

0
. (35)

Here dX
0
is the ray-tube solid angle in the outer region [region (0)]. Further information on

ray geometry in this region, in the far"eld limit, is provided in Figure 4 and section 2.4. The
distance R

r0
is shown as OM in Figure 5; it is based on projecting the far"eld refracted ray

back to the jet axis, and is given by

R
r0
"r

m
/sin h

0
. (36)

Equations (23), (35) and (36) give the approximate relation

dA
n
/r2

m
+sin h

0
(dA

m
/r2

m
)r

m
PR

. (37)

The sin h
0

factor in this result is expected, since dA
m

has its normal at angle h
0

to the ray
direction.

The last factor on the right of equation (37) is evaluated in Appendix D. Combining
equation (D9) from Appendix D with equation (37) above gives

dA
n
/r2

m
+(1!b

1
#b

0
)
c
1

c
0

E2 sin h
1

(1!E2 cos2 h
1
)
djdh

1
. (38)

As a check on this result, note that for on-axis sources (i.e., b
1
"b

0
"0) it reproduces the

exact far"eld expression

(dA
n
/R2

r0
)
&!3&*%-$

"dX
0
"dj sin h

0
dh

0
. (39)

The equivalence of equations (38) and (39) in this situation can be demonstrated by "rst
using equation (36) to replace R

r0
, and then using equation (3) above with equation (D6)

from Appendix D to replace h
0

by h
1
.

Finally, when equations (24) and (38) are used to substitute for dX
1

and dA
n
in equation

(33), one obtains the following approximate equation for correcting measured power spectra
to their equivalent far"eld #ight values:

R2
r=

P
=

(u)"
o
1

o
0

D4
1

r2
m
P
m
(u)

1!((c
0
/c

1
) D

1
cos h

1
)2

(1!b
1
#b

0
). (40)

As mentioned above, the exact version of equation (40) is given in Appendix A. An
interpretation of the various factors in equation (40) is presented in the following sections.

3.3. INTERPRETATION OF THE FLIGHT-FACILITY AMPLITUDE CORRECTION EQUATION

f Equation (40), or its generalized version equation (33), converts power spectra of sound
pressure measured outside the jet, on a cylinder of radius r

m
concentric with the jet axis,

to equivalent far"eld #ight values.
f The measurement location on the cylinder r"r

m
is chosen to correspond with the

desired source emission angles (j, h
1
). For this purpose, microphone co-ordinates

(/
m
, x

m
) are chosen as described in section 3.1.
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f The polar emission angle h
1

is the wavenormal polar angle within the jet #ow, referred
to a polar axis pointing in the #ight stream direction. It also corresponds to the #yover
polar angle based on the aircraft position at the emission time.

f The far"eld distance R
r
is the distance travelled by the wavefronts in the true #ight

situation. In aircraft co-ordinates, the atmosphere is moving and R
r

is the distance
travelled relative to the #uid. Note that for an aircraft #ying past a "xed observer in
a still atmosphere, R

r
is the source}observer distance in the far "eld, measured at the

emission time.
f The "nal factor on the right of equation (40) accounts for o!-axis source locations. It is

an approximation, valid when r
m
/a is greater than 3 or so, which can be checked against

the exact special-case results presented below.
f The next-to-last factor in equation (40) represents R2

r0
P
m
(u).

f The factor (o
1
/o

0
)D4

1
is what was called the &&facility correction factor'' in reference [1].

It represents the amplitude correction factor, for on-axis sources and a far"eld observer,
required to correct for refraction through the shear layer after scaling for distance by
(R

r0
/R

r=
)2.

f All frequencies in equation (40), or its generalized version equation (33), are measured
relative to the source (aircraft). Using a ground-based microphone is equivalent to
measuring the frequency relative to the #ow, and yields Doppler shifted frequencies
D

1
u"u

1
. Thus if Pg (u1

) is the power spectrum measured by a ground-based observer
at the same emission distance R

r=
, the two power spectra are related by

u
1

Pg (u1
)"uP

=
(u). (41)

Equation (41) implies that proportional-bandwidth levels (measured in 1/3-octave
bands, for example) are the same for both observers.

f One may wish to convert proportional-band facility measurements at frequency u into
equivalent far"eld #yover data at u

1
, as measured by a stationary observer on the

ground. It follows from equations (33) and (41) that

R2
r=

u
1
Pg (u1

)"
o
1
c
1
D2

1
o
0
c
0

dA
n

dX
1

uP
m
(u). (42)

The angular frequencies which appear in equation (42) may conveniently be replaced by
ordinary frequencies in Hz.

4. NUMERICAL STUDY OF OFF-AXIS EFFECTS

4.1. FACILITY TRANSMISSION COEFFICIENT

Here we consider the correction required in the pressure spectrum level as measured in
the #ight simulation facility, in order to arrive at the true spectrum level as measured in the
far "eld when an aircraft #ies overhead. This is conveniently quanti"ed by introducing the
facility transmission coe.cient, which is the quantity ¹ de"ned in equation (43) below:

(r2
m
#x2

m
)P

m
(u)

R2
r=

P
=

(u)
"

o
0
c
0

o
1
c
1

¹. (43)

The quantity ¹ depends on the geometry, the Mach number M, and the sound speed ratio
c
1
/c

0
(set equal to 1 in the numerical results). Note that the numerator and the denominator

on the left of equation (43) relate to the same ray. According to equation (33), ¹ is given for
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an o!-axis source by

¹"D2
1
(r2
m
#x2

m
) DdA

n
/dX

1
D~1 . (45)

A convenient reference value for ¹ is that which applies to an on-axis source and
a measurement point far from the jet (r

m
/aPR); it is given by

¹
0
"(c

1
/c

0
)D4

1
[compare equation (20), reference [1]]. (46)

The same result may also be obtained from equation (A50) of the present paper.
For a source polar emission angle in the forward arc (h

1
"1203), Figure 8 shows contours

of the logarithmic ratio

D¸
T
"10 log

10
(¹/¹

0
), (47)

plotted in as a function of j and the source position r
s
/a; a far"eld measurement point is

assumed. Note that at an azimuthal angle j"903, ¹ equals its on-axis value. The deviation
D¸

T
increases in magnitude with r

s
/a, but is of opposite sign on either side of j"903. The

other feature of Figure 8 is the &&rim'' in the upper part of the "gure; here D¸
T
P$R. This is

the boundary of total internal re#ection from the shear layer; it has the form

(r
s
/a) sin j"const. (48)

A similar plot is shown in Figure 9, but for an angle in the rear arc (h
1
"603) rather than the

forward arc. There is no total internal re#ection and no &&rim'' appears. The other di!erence
is that the signs of D¸

T
on either side of j"903 are reversed.

4.2. TOTAL INTERNAL REFLECTION

We continue to take c
1
/c

0
equal to 1 in this section, in order to explore the regions of total

internal re#ection and multipath arrival predicted by ray acoustics. As the polar angle h
1

is
Figure 8. Transmission coe$cient ratio in decibels, D¸
T
"10 log

10
(¹/¹

0
), for sound emitted at a polar angle

h
1
"1203 in the far "eld (forward arc); jet Mach number M"0)5. Coordinates are azimuthal launch angle j and

source position r
s
/a.



Figure 9. Transmission loss ratio 10 log
10

(¹/¹
0
) for a source polar emission angle in the rear arc of h

1
"603, an

observer in the far "eld and M"0)5, plotted as a function of j and source position r
s
/a.

Figure 10. Relationship between h
1c

, source position r
s
/a and jet Mach number M.
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increased, total internal re#ection (denoted by h
1
"h

1c
) "rst occurs for j"903, and the

process is complete once the rays emitted at j"03 or 1803 are totally re#ected. The
corresponding lower and upper critical polar angles, h

1c
(j"903) and h

1c
(j"03), are called

h
1l

and h
1u

. Figure 10 shows the dependence of the total internal re#ection angle h
1c

on
(r
s
/a) sin j and the jet Mach number, for C"1; the equation connecting these quantities is

r
s
/a sin j"S

C2(1#Mm
c
)2!m2

c
(1!m2

c
)

(C"c
1
/c

0
, m

c
"cos h

1c
). (49)

Figure 11 shows explicitly how h
1c

varies with j, for various source positions and a Mach
number of 0)5. The symmetry either side of j"903 is apparent, and also the fact that h

1u
is

independent of r
s
/a; both these features are readily predictable from equation (49).



Figure 11. Variation of h
1c

with j for various source positions at a Mach number of 0)5.
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4.3. AMBIGUITY OF LAUNCH ANGLE IN THE TRANSVERSE PLANE

For an observer outside the jet in the forward arc (strictly, for h
1
'h

1l
) there is

a possibility that two distinct rays from the same o!-axis source will emerge from the jet
travelling in the same direction. In mathematical terms, the relationship between launch
angle j and far"eld azimuthal angle /

0
for given h

1
becomes multivalued over part of the

(j, /
0
) plane. This phenomenon was noted by Goldstein [3]; it implies that an observer will

be unable to distinguish the two contributions without some additional information about
the source.

Figure 12 shows the region of ambiguity as the dark-shaded area in the (j, h
1
) plane, for

a jet Mach number of 0)5 and an o!-axis source position of r
s
/a"0)9; a far"eld observer is

again assumed (r
m
/aPR). The adjacent light-shaded areas correspond to unambiguous

transmission of a single ray to the observation point, and the unshaded area (to the right of
the h

1
"h

1c
boundary) corresponds to total internal re#ection.

It is convenient to de"ne three regions along the h
1
-axis, marked I}III in Figure 12.

Region I, de"ned by h
1
(h

1l
, has unambiguous transmission through the jet for all j; note

that h
1l

is obtained from equation (49) as h
1c

(j"903). Region II, de"ned by h
1l
(h

1
(h

1u
,

has unambiguous transmission over only part of the j range: clearly, as soon as h
1

exceeds
h
1l
, ambiguous behaviour is seen over some part of the transmitted range of launch angles j,

and measurements outside the shear layer can no longer be meaningfully interpreted. The
upper limit of region II is obtained from equation (49) as h

1c
(j"03). Finally, region III

allows no transmission at all outside the jet, according to ray acoustics.

5. SUMMARY AND CONCLUSIONS

1. A simpli"ed model of the open-jet type of #ight simulation facility has been used to
study the refraction corrections needed for sources located o! the #ight-stream axis.
The mean #ow model consists of a uniform parallel jet, separated from the outer
stationary #uid by a thin shear layer (thickness d;jet radius). The density and sound
speed in the jet are allowed to be di!erent from those in the ambient #uid.



Figure 12. Region of ambiguity (dark area) in the (j, h
1
) plane, for a far "eld obsever. The region of inambiguous

transmission is represented by light shading, and the region of zero transmission (total internal re#ection) is
unshaded. Jet Mach number M"0)5; o!-axis source position r

s
/a"0)9; c"1.
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2. In the radiation model a point source of arbitrary directivity is located at an o!-axis
position within the jet, and its radiation to any position in the outer #uid (i.e.,
including the geometric near "eld) is calculated via the geometrical acoustics
approximation (GA). The GA approximation strictly requires d/j

!#
to be large, but

numerical studies for a plane shear layer in reference [2] have shown the error to be
typically less than 0)25 dB even in extreme cases (d/j

!#
P0, M"0)5). The main

exception occurs for sound emitted in the forward arc, close to the critical angle.
3. The GA calculation uses ray tracing to identify what microphone positions outside the

jet correspond to speci"ed source emission angles inside the #ow. Exact analytical
expressions are presented for this purpose in section 3.1.

4. Amplitude corrections are then applied along each ray path, to convert facility
measurements taken at a "nite distance from the jet axis to equivalent far"eld #ight
conditions. The generalized correction procedure is summarized in equation (33) and
section 3.3. The advantages of the explicit results presented here, relative to the use of
numerical ray tracing as described in references [3, 4], are the insight available from
analytical expressions and the relative ease of coding for numerical evaluation.

5. In order to assess the in#uence of o!-axis source location on the shear-layer amplitude
correction, a numerical study has been carried out and results are shown in section 4.
The in#uence of source location is generally modest (less than 0)5 dB) for Mach
numbers below 0)5 and for source radial locations, r

s
/a, up to 0)5, but increases rapidly

close to the critical angle for total internal re#ection.
6. The phenomena of total internal re#ection and launch angle ambiguity (due to two

di!erent rays reaching the same observation point) make it impossible to interpret
measurements beyond a certain angle to the downstream jet axis. This critical polar
angle h

1l
is strongly dependent on source radial position, and is determined by

equation (49) of section 4.
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APPENDIX A: RAY-TUBE AREA CALCULATION IN THE GENERAL CASE

1. The ray tube shown in Figure A1 is de"ned by the following four emission directions
from the source at A:

Ray 0 (the reference ray) h
1
, j;

Ray 1 h
1
#dh

1
, j;

Ray 2 h
1
, j#dj;

Ray 3 h
1
#dh

1
, j#dj. (A1)

The intersection of the ray tube with the cylinder r"a de"nes a parallelogram
B
0
B
1
B

2
B
3
.

2. Figure A2 shows a cross-section of the emerging ray tube in the vicinity of B just outside
the jet, normal to the unit vector n

0
(the emerging ray direction). The cross-section

C
0
C

1
C

2
C

3
is the projection of B

0
B

1
B

2
B

3
onto the plane normal to n

0
. The aim in this

appendix is to calculate the cross-sectional area A (s) of the spreading ray tube, as
a function of distance s measured along the ray from B. Note that A(0) is equal to fh,
where f is measured in the i

1
direction and h in the i

2
direction; see Figure A2. The unit

vector i
1

is de"ned to be perpendicular to n
0

and coplanar with (n
0
, i

x
), where i

x
is the

unit vector in the x direction. The unit vectors (i
1
, i

2
, n

0
) form a right-handed

orthogonal set. They are further illustrated in Figures A3 and A4.
3. The dimensions f, g, h of the parallelogram C

0
C

1
C

2
C

3
in Figure A2 are related to the

corresponding dimensions f @, g @, h@ of the parallelogram B
0
B
1
B
2
B
3

by

f"f @ sin h
0
, g"g@ sin h

0
, h"h@ cos a

0
. (A2)

4. The ray direction outside the jet is given by (h
0
, /

0
). These angles are determined by the

angles (h
1
, j) at which the ray is emitted inside the jet. Note that /

0
is not the

co-ordinate of a point on the ray, but the ray orientation relative to /"0. The required
relations are

cos h
0
"GAm,

;

c
1

,
c
1

c
0
B (m"cos h

1
), (A3)



Figure A1. Intersection of ray tube with the edge of the jet (r"a). Also shown in the emerging reference ray with
direction n

0
.

Figure A2. Cross-section of ray tube immediately outside the jet, viewed looking back along the reference ray
towards B

0
; the unit vector n

0
points out of the page. The three unit vectors i

1
, i

2
, n

0
form a right-handed

orthogonal set, and remain constant along the ray from B
0

to M.

Figure A3. View in i
x
direction (parallel to jet axis), showing the incident and transmitted ray angles at B and the

unit vector i
2

normal to the emerging ray in the transverse plane.
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/
0
"j!sin~1 ((r

s
/a) sin j)#a

0
. (A4)

For details, see equations (21), (22), (6), (7) and (4) of section 2.



Figure A4. View in i
2

direction, showing the emerging ray (as in Figure A3) and the unit vector i, perpendicular
to the ray.
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5. It is convenient to locate points (B
0
, B

1
, B

2
, B

3
) on r"a by means of their cylindrical

co-ordinates (x
B
, /

B
). From equation (13) of section 2, one obtains

/
B
"H (j, r

s
/a); (A5)

also

x
B
/a"X (m, j, ;/c

1
, r

s
/a) (A6)

as follows from section 2, equations (20) and (18).
6. The emerging ray direction n

0
(m, j) is conveniently speci"ed in cylindrical components,

based on the (/, r) co-ordinate directions at point B:

(n
0
)
x
"cos h

0
, (n

0
)/"sin h

0
sin a

0
, (n

0
)
r
"sin h

0
cos a

0
. (A7)

Here angle a
0

is de"ned in Figures 3 and A3. The set of unit vectors (i
x
, i/, ir) is de"ned

to correspond with the local co-ordinate directions (x, /, r).
7. In what follows, it will be necessary to convert between local (x, /, r) components, based

on the (i
x
, i/, ir) unit vectors de"ned above, and components based on the alternative

(i
1
, i

2
, n

0
) system. We therefore begin by expressing i

1
and i

2
in terms of the former

system. The unit vector i
2

is given by (n
0
'i

x
) / Dn

0
'i

x
D, where

(n
0
'i

x
)"(i

x
cos h

0
#i/ sin h

0
sin a

0
#i

r
sin h

0
cos a

0
)'i

x

"i/ sin h
0
cos a

0
!i

r
sin h

0
sin a

0
. (A8)

It follows that

Dn
0
'i

x
D"sin h

0
. (A9)

Thus

i
2
"i/ cos a

0
!i

r
sin a

0
. (A10)

8. The unit vector i
1

is given by

i
1
"i

2
'n

0
. (A11)
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Thus equations (A7), (A10), and (A11) give

i
1
"(i/ cos a

0
!i

r
sin a

0
)'(i

x
cos h

0
#i/ sin h

0
sin a

0
#i

r
sin h

0
cos a

0
)

"i
x

(sinh
0
cos2 a

0
#sin h

0
sin2 a

0
)#i/(!cos h

0
sin a

0
)#i

r
(!cos h

0
cos a

0
)

"i
x
sin h

0
!i/ cos h

0
sin a

0
!i

r
cos h

0
cos a

0
. (A12)

It is easy to verify that i
1 )

i
2
"0, as expected.

9. Calculating the ray-tube area outside the jet (beyond point B) requires a knowledge of
the separate directions of the four neighbouring rays. We therefore de"ne the
unit-vector increments (e, e@) as follows:

n
0

(ray 1)!n
0

(ray 0)"e, n
0

(ray 2)!n
0

(ray 0)"e@. (A13)

These increments are special cases of the general relation

dn
0
"dMi

x
cos h

0
#i/ sin h

0
sin a

0
#i

r
sin h

0
cos a

0
)N

"i
x
d(cos h

0
)#i/[d(sin h

0
sin a

0
)#sin h

0
cos a

0
d/

B
]

#i
r
[d(sin h

0
cos a

0
)!sin h

0
sin a

0
d/

B
]. (A14)

The last step above involves the relations

di
x
"0, di/"(!d/

B
) i
r
, di

r
"(d/

B
) i/ (A15)

for the basis vector increments due to a shift in the ray-crossing point B: the four rays
cross r"a at four di!erent positions (B

0
, B

1
, B

2
, B

3
), and the di!erences in /

B
produce

di!erences in i/ and i
r
.

10. From equation (A3) above, with cos h
1

written as m,

d(cos h
0
)"(LG/Lm) dm, d(sin h

0
)"!cot h

0
d(cos h

0
). (A16)

Also, to evaluate equation (A14) we need an expression for da
0
. Equation (21) of

section 2 gives

sin a
0
"(K

1
/K

0
) (r

s
/a) sin j"Q (j, m,;/c

1
, c

1
/c

0
, r

s
/a) . (A17)

Therefore

d (sina
0
)"(LQ/Lm) dm#(LQ/Lj) dj, d(cos a

0
)"!tan a

0
d(sin a

0
). (A18)

11. The next step is to express dn
0

and hence (e, e@) in terms of (dm, dj), using equations (A5)
and (A14)}(A18) above:

dn
0
(dm, dj)"i

x
Gmdm

#i/ [sin h
0
(Qmdm#Qjdj)#sin h

0
cos a

0
Hjdj!sin a

0
cot h

0
Gm dm]

#i
r
[!sin h

0
tan a

0
(Qmdm#Qjdj)!sin h

0
sin a

0
Hjdj

!cos a
0
cot h

0
Gmdm]; (A19)

e"dn
0
(dm, 0), e@"dn

0
(0, dj). (A20)
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12. To calculate A(s), we shall need the components of e, e@ in the i
1

and i
2

directions. The
scalar products of dn

0
with (n

0
, i

1
, i

2
) are

n
0 )

dn
0
"MGm cos h

0
#[Qm sin h

0
!Gm sin a

0
cot h

0
] sin h

0
sin a

0

#[!Qm tan a
0
sin h

0
!Gm cos a

0
cot h

0
] sin h

0
cos a

0
N dm

#M[Qj sin h
0
#Hj sin h

0
cos a

0
]sin h

0
sin a

0

#[!Qj tan a
0
sin h

0
!Hj sin a

0
sin h

0
] sin h

0
cos a

0
N dj

"0 as expected, (A21)

i
1 )

dn
0
"MGm sin h

0
#[!Qm sin h

0
#Gm sin a

0
cot h

0
] cos h

0
sin a

0

#[Qm tan a
0
sin h

0
#Gm cos a

0
cot h

0
] cos h

0
cos a

0
Ndm

#M![Qj sin h
0
#Hj sin h

0
cos a

0
]cos h

0
sin a

0

#[Qj tan a
0
sin h

0
#Hj sin a

0
sin h

0
] cos h

0
cos a

0
Ndj

"(1/sin h
0
) Gm dm, (A22)

i
2 )

dn
0
"M[Qm sin h

0
!Gm cot h

0
sin a

0
] cos a

0

#[Qm sin h
0
tan a

0
#Gm cot h

0
cos a

0
] sin a

0
Ndm

#M[Qj sin h
0
#Hj sin h

0
cos a

0
]cos a

0

#[Qj sin h
0
tan a

0
#Hj sin h

0
sin a

0
] sin a

0
Ndj

"(sin h
0
/cos a

0
)Qm dm#sin h

0
((1/cosa

0
) Qj#Hj) dj. (A23)

13. We can now "nd the components, in the i
1

and i
2

directions, of the unit-vector
increments e, e@ de"ned by equation (A20):

e
1
"(1/sin h

0
)Gmdm, e

2
"(sin h

0
/cos a

0
)Qmdm, (A24)

e@
1
"0, e@

2
"sin h

0
((1/cos a

0
) Qj#Hj) dj. (A25)

14. The next step is to "nd the cross-sectional area of the ray tube, A(s), at an arbitrary
distance s from point B, measured along the reference ray.

Figure A2 shows the cross-section C
0
C

1
C

2
C

3
in (x

1
, x

2
) co-ordinates, at s"0. The

dimensions ( f, g, h) of the parallelogram are given by

f"(i
x
' i1) dx

B
(dm, 0)"a sin h

0
Xm dm, (A26)

g"(i
x
' i1

) dx
B
(0, dj)"a sin h

0
Xjdj, (A27)

h"(i/ ' i2
) ad/

B
(0, dj)"a cos a

0
Hjdj, (A28)

where we have used equations (A5), (A6), (A11) and (A13).
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15. Further along the reference ray, the co-ordinates of C
0
,C

1
,C

2
,C

3
change as follows:

Point (x
1
, x

2
) at s"0 (x

1
, x

2
) at arbitrary s

C
0

0, 0 0 0
C

1
f, 0 f#e

1
s, e

2
s

C
2

g, h g#e@
1
s, h#e@

2
s

C
3

f#g, h f#g#e
1
s#e@

1
s, h#e

2
s#e@

2
s

The area of a triangle whose vertices are located at [(0, 0), (a
1
, a

2
), (b

1
, b

2
)]

is 1
2

Da
1
b
2
!b

1
a
2
D. It follows that the ray-tube area at arbitrary s is

A(s)"D f h#s (e
1
h!e

2
g#e@

2
f )#s2 (e

1
e@
2
!e

2
e@
1
) D . (A29)

Note that the leading term gives the cross-sectional area at B (on the edge of the jet);
while the s2 term gives the far"eld area, and accounts for spherical spreading.

16. The ray-tube area expression (A29) may be written as

A (s)"DA
0
#A

1
s#A

2
s2 D Ddm djD . (A30)

The coe$cients follow, from equations (A24) to (A28). Thus

A
0
"a2 sin h

0
cos a

0
XmHj , (A31)

A
1
"G

1

sin h
0

a cos a
0
GmHj!a

sin2h
0

cos a
0

QmXj#a sin2h
0A

1

cos a
0

Qj#HjBXmH, (A32)

A
2
"A

1

cos a
0

Qj#HjBGm . (A33)

17. The explicit functions G, H, Q, X and their derivatives are listed below. From equations
(3), (4) and (13) of section 2

G(m, M, C)"
m

C(1#Mm) AC"

c
1

c
0

; M"

;

c
1
B, (A34)

Gm"
1

C(1#Mm)2
"

C

m2
G2, (A35)

HAj,
r
s
aB"j!sin~1(p

s
sin j) (p

s
"r

s
/a), (A36)

Hj"1!
p
s
cos j

J1!p2
s
sin2 j

"1!b
1
. (A37)

From equations (4), (6)}(8) and (12) of section 2,

Q(m, j, M, C, p
s
)"sin a

0
"C

(1!m2)

(C2 (1#Mm)2!m2)D
1@2

p
s
sin j, (A38)

Qm"
[m!C2(m#M) (1#Mm)]

(1!m2)1@2[C2(1#Mm)2!m2]3@2
p
s
sin j, (A39)

Qj"C
(1!m2)

(C2(1#Mm)2!m2)D
1@2

p
s
cos j"Q cot j. (A40)
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Finally, from equations (20), (13) and (18) of section 2,

X"

d
1
a

m#M

J1!m2
,

X (m, j, M, p
s
)"

1

sin j
sin[j!sin~1(p

s
sin j)]

(m#M)

J1!m2

"[(1!p2
s
sin2 j)1@2!p

s
cos j]

(m#M)

J1!m2
, (A41)

Xm"[(1!p2
s
sin2 j)1@2!p

s
cos j]

(1#Mm)

(1!m2)3@2
, (A42)

Xj"Cps
sin j!

p2
s
sin j cos j

(1!p2
s
sin2 j)1@2D

(m#M)

J1!m2
. (A43)

18. The ratio dA
n
/dX

1
which appears in equation (33) of section 2 can now be calculated as

dA
n

dX
1

"

A(s)

DdmdjD
"DA

0
#A

1
s#A

2
s2 D, (A44)

from equation (A30) above and equation (24) of section 2. The coe$cients A
0
, A

1
, A

2
are

known from paragraphs 16 and 17 above. The ray path length s (equal to BM) is given
by

s/a"1/sin h
0

[Jp2
m
!sin2a

0
!cosa

0
] (p

m
"r

m
/a) (A45)

which follows from equation (29) of section 2 and the relation s"d
0
/sin h

0
.

19. The following special cases of equation (A45) provide a useful check on the ray-tube
area result, equation (A44).

(1) Far ,eld (p
m
PR):

s/a+p
m
/sin h

0
. (A46)

(2) Measurement on nozzle lip line (p
m
"1):

s/a"0. (A47)

(3) Source on jet axis (a
0
"0):

s/a"(1/sin h
0
) (p

m
!1). (A48)

We consider these special cases in turn, and evaluate equation (A44) for each one.
20. First, consider special case (1) which is analyzed independently in Appendix D. In

the far "eld, equations (A44) and (A46) give

dA
n

dX
1

+DA
2
D

p2
m

sin2 h
0

a2. (A49)
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With A
2

given by equations (A33, A35, A37, A40), we get

dA
n

dX
1

+

r2
m

sin2h
0
K

1

cos a
0

sin a
0
cot j#1!b

1 K
C

cos2h
1

cos2h
0

"r2
m
C

cos2h
0

sin2h
0

1

cos2 h
1

D1!b
1
#b

0
D . (A50)

The quantities

b
1
"La

1
/Lj"1!Hj , b

0
"La

0
/Lj"(1/cos a

0
) Qj"tan a

0
cot j (A51, A52)

are introduced in Appendix D. Equation (A50) yields

dA
m
"

1

sin h
0

dA
n

(see Figure 4)

"r2
m
C

cos2h
0

sin3h
0

Ddm djD
cos2 h

1

D1!b
1
#b

0
D

"r2
m
C

cos2h
0

sin3h
0

sin h
1

cos2 h
1

D1!b
1
#b

0
D Ddjdh

1
D , (A53)

which agrees with equation (D9)

21. Next, consider special case (2) which is analyzed independently in Appendix B. When
r
m
"a, s"0 and equation (A44) gives

dA
n
/dX

1
"DA

0
D

"a2 Dsin h
0
cos a

0
XmHj D

"a2 Ksin h
0
cos a

0

sin /
B

sin j
cos h

1
C cos h

0

1

sin3 h
1

Hj K ; (A54)

here we have used equation (A42) and converted the result back into the notation of
Appendix B, using angles /

B
and h

0
. Since

dX
1
"Ddm djD"sin h

1
Ddh

1
djD , (A55)

equation (A54) gives

dA
n
(r
m
"a)"a2Hj cos a

0

sin/
B

sin j
sin h

0
C cos h

0

cos h
1

sin2 h
1

Ddh
1
djD . (A56)

Equation (A56) agrees with Appendix B, equation (B7), where Hj is written as F(j). This
provides a second check on our general result, equation (A44) above. The A

0
and

A
2
terms have now both been veri"ed, but we still need a check on A

1
; a partial check is

provided in the next two paragraphs, where we consider on-axis sources.
22. Our "nal check on equation (A44) is provided by special case (3) which is analyzed

independently in Appendix C. When r
s
"0 (i.e., p

s
"0), a

0
becomes zero and the
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coe$cients A
0
, A

1
, A

2
simplify as follows:

H"/
B
Pj; Hm"0, Hj"1, (A57)

Q"sin a
0
P0; Qm"0, Qj"0, (A58)

XP

(m#M)

J1!m2
(since d

1
Pa),

Xm"
(1#Mm)

(1!m2)3@2
"

cos h
1

C cos h
0

1

sin3 h
1

, Xj"0. (A59)

Thus

A
0
"a2 sin h

0

1

C cos h
0

cos h
1

sin3 h
1

, (A60)

A
1
"aC

cos2 h
0

cos2 h
1

1

sin h
0

#a sin2 h
0

1

C cos h
0

cos h
1

sin3 h
1

, (A61)

A
2
"C

cos2 h
0

cos2 h
1

. (A62)

23. The ray path length s in this case is given by equation (48) as s"(r
m
!a)/sin h

0
.

Substituting equations (A60)}(A62) in equation (A44) gives, for on-axis sources,

1

a2

dA
n

dX
1

"K
1

C
tan h

0

cos h
1

sin3 h
1

#A
r
m
a
!1BAC cot2 h

0

1

cos2 h
1

#

1

C
tan h

0

cos h
1

sin3 h
1
B

#A
r
m
a
!1B

2
C cot2 h

0

1

cos2 h
1
K . (A63)

The constant terms (i.e., those independent of r
m
) on the right side cancel, leaving

1

a2

dA
n

dX
1

"KA
r
m
a B

2
C cot2 h

0

1

cos2h
1

#A
r
m
a BA

1

C
tan h

0

cos h
1

sin3h
1

!C cot2 h
0

1

cos2 h
1
BK

"C cot2 h
0

1

cos2h
1
KA

r
m
a B

2
#A

r
m
a BG

1

C2A
tan h

0
tan h

1
B
3
!1HK , (A64)

which agrees with the result in equation (C4).
24. All three special cases listed in paragraph 19 above have now been checked; in each case

the general result, equation (A44), agrees with the independent analyses of Appendices
B, C, and D. The only terms not checked in this process are the Qm and Qj terms in
equation (A32). We have therefore based the numerical study of Section 4 on equation
(A44), with the three coe$cients (A

0
, A

1
, A

2
) given by equations (A31)}(A43).

APPENDIX B. SIMPLIFIED EXACT ANALYSIS OF RAY-TUBE AREA: (i) MEASUREMENTS
IMMEDIATELY OUTSIDE JET SHEAR LAYER

It is straightforward to calculate dA
n

exactly for points immediately outside the shear
layer (r

m
"a), noting that dA

n
is then related to dA

m
by dA

n
"dA

m
n
0r
"dA

m
sin h

0
cos a

0
.
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The area A
m

on the cylinder r"r
m

is given, for the special case r
m
"a, by

dA
m
"a Dd/

B
dx

B
D , (B1)

where

d/
B
"(L/

B
/Lj)h

1
dj, dx

B
"(Lx

B
/Lh

1
)j dh

1
(B2)

and /
B
, x

B
are given by equations (13), (20) and (18). It follows that

d/
B
"G1!

(r
s
/a) cos j

J1!((r
s
/a) sin j)2Hdj"F (j) dj (say), (B3)

dx
B
"!a

sin/
B

sin j
(1#(;/c

1
) cos h

1
)

sin2 h
1

dh
1
. (B4)

Finally, substituting equations (B3) and (B4) in equation (B1) gives

dA
m
"a2 F (j)

sin/
B

sin j
dj dh

1
D

1
sin2 h

1

. (B5)

The ray-tube area dA
n
("dA

m
sin h

0
cos a

0
) follows directly. We can now combine equation

(B5) with the /
B

equation (13) and the a
0

equation

sin2 a
0
"

sin2 h
1

(E~2!cos2 h
1
)A

r
s
aB

2
sin2 j (B6)

*which follows from equations (8), (9) and (12)*to obtain the exact ray-tube area at point
B immediately outside the shear layer. For comparison purposes, we write the exact result
at r

m
"a as

dA
n

r2
m

"F(j)
sin/

B
sin j

cos a
0

c
0

c
1

sin h
0

cos h
0

cos h
1

sin2 h
1

Ddjdh
1
D . (B7)

The "rst three factors on the right of equation (B7) are equal to 1 for on-axis sources; this
fact is used below in Appendix C, to provide a cross-check on equation (B7). The form of
equation (B7) also allows direct comparison with the approximate ray-tube area expression
given in equation (38) of section 3.2, and with the exact general expression derived in
Appendix A.

APPENDIX C. SIMPLIFIED EXACT ANALYSIS OF RAY-TUBE AREA: (ii) SOURCE
ON JET AXIS

A second check on the exact expression for dA
n
derived in Appendix A can be found by

locating the source on the jet axis; the result obtained below places no restriction on the
measurement radius, beyond r

m
'a. The ray-tube area is given exactly in this case by

dA
n
"R

r0
(R

r0
#DR

r
) sin h

0
Ddh

0
djD , (C1)

where DR
r
is de"ned in Figure A5. From equation (29) of reference [1],

DR
r
"(a/sin h

0
) [(tan h

0
/tan h

1
)3 (c

0
/c

1
)2!1]. (C2)



Figure A5. Near-"eld correction for a source on the jet axis.
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Equation (D6) of Appendix D gives

sin h
0
dh

0
"

c
1

c
0

cos2 h
0

cos2 h
1

sin h
1
dh

1
(C3)

and R
r0

is de"ned by equation (36). Combining these results gives

dA
n

r2
m

"G1#
a

r
m
CA

tan h
0

tan h
1
B
3

A
c
0

c
1
B
2
!1DH

c
1
cos2 h

0
c
0
sin2 h

0

sin h
1

cos2 h
1

dj dh
1

(C4)

which gives dA
n
exactly for on-axis sources.

A corresponding approximate expression is obtained from equation (38), section 3.2.2:

dA
n

r2
m

+

c
1

c
0

cos2 h
0

sin2 h
0

sin h
1

cos2 h
1

djdh
1
. (C5)

For on-axis sources, the only di!erence between the exact expression, equation (C4), and the
approximation above is the factor in curly brackets. This observation suggests that the
more general approximate expression in equation (38) could be improved simply by
inserting the curly-bracketed factor from equation (C4).

In the special case r
m
"a considered in Appendix B, this bracketed factor takes the value

M2N"A
tan h

0
tan h

1
B
3

A
c
0

c
1
B
2
. (C6)

Therefore, for a combination of (i) measurement position immediately outside the shear
layer and (ii) on-axis sources,

dA
n

r2
m

"

c
0

c
1

sin h
0

cos h
0

cos h
1

sin2 h
1

dj dh
1
. (C7)

This special case of equation (C4) agrees exactly with the on-axis version of equation (B7),
which was derived for any source position and r

m
"a.

APPENDIX D: RAY-TUBE AREA CALCULATION IN THE FAR FIELD

The area dA
m
, de"ned in Figure 4, has a far"eld asymptotic value

dA
m
+r

m
Dd/

0
dx

0
D , (D1)
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where

d/
0
"

L/
0

Lj Kh
1

dj, dx
0
"

Lx
0

Lh
1
Kj dh

1
; (D2, D3)

the far"eld azimuthal angle /
0

is given by equation (21) of section 2.4 for "nite r
s
/a, and the

far"eld axial ray displacement x
0

is

x
0
"r

m
cot h

0
. (D4)

Thus

Lx
0

Lh
1
Kj"!

r
m

sin2h
0

dh
0

dh
1

, (D5)

where dh
0
/dh

1
follows from the di!erential version of equation (3):

c
0

sin h
0

cos2 h
0

dh
0
"c

1

sin h
1

cos2 h
1

dh
1
. (D6)

Combining the last two equations gives

Lx
0

Lh
1
Kj"!r

m

c
1

c
0

cos2 h
0

sin3 h
0

sin h
1

cos2 h
1

. (D7)

Also, since K
1
/K

0
depends on h

1
but not on j (as equation (9) demonstrates), di!erentiating

equation (21) gives

L/
0

Lj Kh
1

"1!C1!A
r
s
aB

2
sin2 jD

~1@2 r
s
a

cos j#C1!A
K

1
K

0
B
2

A
r
s
aB

2
sin2 jD

~1@2 K
1

K
0

r
s
a

cos j

"1!b
1
#b

0
, (D8)

where b
1
"La

1
/Lj and b

0
"La

0
/Lj.

It follows from these results that in the far "eld (r
m
/aPR),

dA
m
+r2

m

c
1

c
0

cos2 h
0

sin3 h
0

sin h
1

cos2 h
1

D1!b
1
#b

0
D Ddjdh

1
D

+

r2
m

sin h
0

D1!b
1
#b

0
D
c
1

c
0

E2 sin h
1

1!E2 cos2 h
1

Ddjdh
1
D. (D9)

In equation (D9), the relation cos h
0
"E cos h

1
from equation (15) has been used to replace

h
0

by h
1
.

APPENDIX E: NOMENCLATURE

a #ight-stream nozzle radius
A(s) cross-sectional area of ray tube formed by the four rays through points B

0
, B

1
, B

2
, B

3A
0
, A

1
, A

2
coe$cients in A(s) expression

dA
m

ray-tube area on measurement cylinder, r"r
mdA

n
ray-tube cross-sectional area at measurement position

c
1
, c

0
sound speed inside, outside jet

C ratio of sound speeds c
1
/c

0d
1

distance in transverse plane between A and B
d
0

distance in transverse plane between B and M
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D
1

Doppler factor u
1
/u

0
, de"ned in equation (4)

E cos h
0
/cos h

1
"(c

0
/c

1
)D

1f, f @ base-lengths of parallelograms C
0
C

1
C

2
C

3
, B

0
B
1
B
2
B
3
; see equation (A2)

F(j) function of azimuthal ray launch angle j, de"ned in equation (B3)
g, g@ o!sets of parallelograms C

0
C

1
C

2
C

3
, B

0
B
1
B
2
B
3G cos h

0h, h@ heights of parallelograms C
0
C

1
C

2
C

3
, B

0
B
1
B
2
B
3H /

Bi
x
, i

r
, i/ set of orthogonal unit vectors based on co-ordinate directions at B

i
1
, i

2
orthogonal unit vectors, normal to n

0k
x

axial wavenumber
k
1
, k

0
acoustic wavenumbers, u

1
/c

1
, u

0
/c

0K
1
, K

0
wavenumbers in transverse plane, for waves propagating inside and outside the #ow
respectively

M #ight stream Mach number, ;/c
1n

1
, n

0
unit wavenormal vectors inside, outside jet

P
m

power spectrum of acoustic pressure at measurement position M
P
=

power spectrum of acoustic pressure under far"eld #ight conditions
Q sin a

0r radius from jet axis
r
m

measurement radius outside jet
r
s

radial position of source
R

r
wavefront propagation distance from source, relative to #uid

DR
r

correction to propagation distance
R

r0
distance OM, Figure A5

RrR far"eld value of R
r
for aircraft in #ight

s distance measured from B along ray
; jet #ow velocity
v
t
, v

x
components of v transverse and parallel to jet axis

v ray velocity
d=

1
, d=

0
sound power in ray tube inside, outside jet

x axial co-ordinate (with source at x"0)
x
B

axial co-ordinate of point where ray crosses shear layer
x
m

axial co-ordinate of measurement position
x
1
, x

2
co-ordinates in plane normal to reference ray outside jet, with origin on the ray (at C

0
)

X x
B
/a

a
1
, a

0
ray or wavenormal angles in plane transverse to jet axis, relative to radial direction at
B (i.e., angles of incidence and transmission respectively)

b
1
, b

0
La

1
/Lj, La

0
/Lj

d angle related to near-"eld geometry, Figure 7
e, e@ increments in n

0e
1
, e

2
; e@

1
, e@

2
components of e or e@ parallel to i

1
, i

2m cos h
1h

1
, h

0
wavenormal polar angles relative to jet axis, inside and outside the #ow respectively

j azimuthal launch angle for ray leaving source
o
1
, o

0
#uid density inside and outside the jet

p dimensionless radial co-ordinate r/a
/ azimuthal angle about jet axis, de"ned so that source is at /"0
/
B

azimuthal position of point B where ray crosses shear layer
/
m

azimuthal position of measurement point outside shear layer
/
0

azimuthal orientation of emerging ray
u, u

0
angular frequency in a reference frame which is "xed with respect to the laboratory (or
the aircraft)

u
1

angular frequency in a reference frame which is "xed with respect to the #ight-simulation
jet #ow (or the atmosphere)

X solid angle
dX

1
solid angle formed by a small cone of wavenormal directions leaving the source, inside
the jet

dX
0

solid angle formed by the corresponding rays in the far "eld, outside the #ow
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Subscripts

B position B
m measurement position M
r radial component of vector
s source position
t transverse component of vector
x axial component of vector
/ azimuthal component of vector
j, m partial derivatives with respect to j or m
l value inside jet
0 value outside jet
R value in far"eld
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